- UID
- 352
- 帖子
- 1321
- 精华
- 14
- 积分
- 2599
- 来自
- 河南永城
|
M集的另类做法
大家都知道,对于迭代 z=z^2+c , 当赋初值 z=0 , c 的收敛域就是M集(下面简称标准M集)。
现在改变迭代函数为 z=c z^2+1 , 同样可赋初值 z=0 , 考虑c 的收敛域,我发现还是M集,并且(可能)和标准M集全等。
改变迭代函数为 z=c z^2+c_1 , 赋初值 z=0 , 考虑c 的收敛域,同样还是M集,改变 c_1 的值只是对标准M集的旋转和放缩;考虑 c_1 的收敛域,同样还是M集,改变 c 的值只是对标准M集的旋转和放缩。
对于这些结论,我不知道前辈们做过没有,如何给出理论证明。 |
-
-
另类M集.gsp (71.97 KB)
|